tasklet v/s bottom halves v/s softirq

I spent good time reading the Linux Kernel things this morning. Here is what I found which explains the difference between bottom halves, tasklets and softirqs.
My post about the tasklet-to-workqueue conversion contained a reference to a nice paper http://www.wil.cx/matthew/lca2003/paper.pdf.

Softirqs and tasklets replaced bottom halves, because bottom halves were a large bottle neck on SMP systems. If a bottom half was running on one CPU no other bottom halves could run on any other CPU. It’s obvious how these wouldn’t scale.

Softirqs and tasklets replaced bottom halves. The difference between softirqs and tasklets, is that a softirq is guaranteed to run on the CPU it was scheduled on, where as tasklets don’t have that guarantee. Also the same tasklet can not run on two separate CPUS at the same time, where as a softirq can. Don’t confuse the tasklet restriction with that of the bottom halves. Two different tasklets can run on two different CPUs, just not the same one.

Now to answer your question. I can’t argue why we have tasklets (I’m trying to get rid of them ;-) but I’ll give the best example of why we have softirqs. That’s the networking code. Say you get a network packet. But to process that packet, it takes a lot of work. If you do that in the interrupt handler, no other interrupts can happen on that IRQ line. That would cause a large latency to incoming interrupts and perhaps you’ll overflow the buffers and drop packets. So the interrupt handler only moves the data off to a network receive queue, and returns. But this packet still needs to be processed right away. Before anything else. So it goes off to a softirq for processing. Now you still allow for interrupts to come in. Perhaps the network interrupt comes in again on another CPU. The other CPU can start processing that packet with a softirq on that CPU, even before the first packet was done processing.

See how this can scale well? But the same tasklet can’t run on two different CPUs, so it doesn’h have this advantage. In fact if a tasklet is scheduled to run on another CPU but is waiting for other tasklets to finish, and you try to schedule the tasklet on a CPU that’s not currently processing tasklets, it will notice that the tasklet is already scheduled to run and not do anything. So tasklets are not so reliable when it comes to latencies. Hence, why I’m working on getting rid of them, since I don’t beleive they accomplish what people think they do.

Taken from one of the comments from http://lwn.net/Articles/302043/

Interesting !! 


3 thoughts on “tasklet v/s bottom halves v/s softirq

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s